SANJIVANI RURAL EDUCATION SOCIETY'S SANJIVANI COLLEGE OF ENGINEERING KOPARGAON

(An Autonomous Institute Affiliated to SPPU Pune)

DEPARTMENT OF MECHANICAL ENGINEERING COURSE STRUCTURE – 2020 PATTERN for AY 2023-24 FINAL YEAR B. TECH.

LIST OF ABBREVIATIONS										
Abbreviation	Full Form	Abbreviation	Full Form							
ES	Engineering Science	HSMC	Humanity Science							
PCC	Professional Core	CIA	Continuous Internal Assessment							
PE	Professional Elective	OR	End Semester Oral Examination							
OE	Open Elective	PR	End Semester Practical Examination							
ISE	In-Semester Evaluation	TW	Continuous Term Work Evaluation							
ESE	End-Semester Evaluation	BSC	Basic Science Course							
PRJ	Project	MLC	Mandatory Learning Course							

	Code	Community of the	Hı	s./We	ek	Credits				Marks			
Cat		Course Litle	т	т	р			Theory		тм	OD	DD	Total
			L	1	r		ISE	ESE	CIA	IW	UK	ГK	Total
PCC	ME401	Finite Element Analysis	3	-	-	3	30	50	20	-	-	-	100
PCC	ME402	Heating Ventilation and Air Conditioning	3	-	-	3	30	30 50 20		-	-	-	100
РСС	ME403	Dynamics of Machines	3	-	-	3	30	50	20	I	-	-	100
PEC	ME404	Professional Elective-III	4	-	-	4	30	50	20	-	-	-	100
PEC	ME405	Professional Elective-IV	3	-	-	3	30	50	20	-	-	-	100
PCC	ME406	Lab- I Finite Element Analysis	-	-	2	1				-	-	50	50
PCC	ME407	Lab-II Heating Ventilation and Air Conditioning	-	-	2	1	-	-	-	-	-	50	50
PCC	ME408	Lab-III Dynamics of Machines	-	-	2	1	-	-	-	-	50	-	50
PRJ	ME409	Project Stage-I	-	-	6	3	-	-	-	100	50	-	150
MLC	MC410	MC410 Mandatory Learning Course-VII		-	-	Non Credit	-	-	-	-	-	-	Pass / Fail
		Total	17	-	12	22	150	250	100	100	100	100	800

Final B.Tech. SEM VII 2020

Final B.Tech. SEM VIII 2020

			H	Irs./We	ek	Credits				Marks			
Cat	Code	Course little	т	т	п			Theory		TW		вр	Tetal
			L	1	P		ISE	ESE	CIA	IW		rĸ	Total
OE	ME411	1 Open Elective-I		-	-	3	-	75	25	-	-	-	100
OE	ME412	Open Elective-II	3	-	-	3	-	75	25	-	-	-	100
OE	ME413	Open Elective -III	2	-	-	2	-	75	25	-	-	-	100
PCC	ME415	Professional Internship	-	-	8	6	-	-	-	100	50	-	150
PRJ	ME417	Project Stage-II	-	-	4	2	-	-	-	-	50	-	50
		Total	9	-	12	16	-	225	75	100	100	-	500
	Р	rofessional Elective – III		Professional Elective – IV									
ME	404A	Heat Transfer Equipment Design		ME40	5A	Energy	Audit /	And Ma	nagen	nent			
ME	404B	Material Handling Equipment Desi	ign	ME40	5B	Pressure	e Vesse	el and Pi	ping S	System	Desig	gn	
ME404C		Welding Application Technology			ME405C Industrial Engineering and Operations Research					h			
ME404D		Data Science		ME40	5D	Advanced Materials and Testing							

ME410	Mandatory Learning	Course-VII		Financially Smart					
	Open Electives-I	Open Electives-II			Open Electives-III				
ME411A	Fundamentals of Artificial Intelligence	ME412A Introd Learr		duction to Machine	ME413A	Data Science for Engineers			
ME411B	Functional and Conceptual Design	ME412B	Desig	gn of Mechatronic Systems	ME413B	Design Practice - II			
ME411C	Fundamentals of Additive Manufacturing Technologies	ME412C	Auto	mation in Manufacturing	ME413C	Design, Technology and Innovation			
ME411D	Introduction to Internet of Things	ME412D	Intro Indus	duction to Industry 4.0 and strial Internet of Things	ME413D	Innovation, Business Models and Entrepreneurship			

FINITE ELEMENT ANALYSIS (ME401)

Tea	ching Scheme	Examination Scheme				
Lectures:	3 Hrs. / Week	CIA:	20 Marks			
Practical:	-	In Sem Exam:	30 Marks			
		End Sem Exam:	50 Marks			
Credits:	3	Total:	100 Marks			

Prerequisite Course: Numerical Methods, Solid Mechanics, Theory of Elasticity, Engineering Mathematics, Statistical Methods

Course Objectives:

- 1. To understand the philosophy and general procedure of Finite Element Method as applied to solid mechanics and thermal analysis problems.
- 2. To familiarize students with the displacement-based finite element method for displacement and stress analysis and to introduce related analytical and computer tools.
- 3. It provides a bridge between hand calculations based on mechanics of materials and machine design and numerical solutions for more complex geometries and loading states.
- 4. To study approximate nature of the finite element method and convergence of results are examined.
- 5. It provides some experience with a commercial FEM code and some practical modeling exercises
- 6. It provides some experience of using commercial finite element analysis software to solve complex problems in solid mechanics

COs	Course Outcomes	Blooms Taxonomy			
005		Level	Descriptor		
CO1	Explain the fundamental concepts of FEA	2	Understand		
CO2	Examine 1-D element stiffness matrices and load vectors to solve for displacements and stresses	3	Apply		
CO3	Examine 2-D element stiffness matrices and load vectors to solve for displacements and stresses	3	Apply		
CO4	Find and use Iso-parametric elements and numerical methods to solve for displacements and stresses.	2	Understand		

CO5	Analyse simple mechanical structure by using 1-D thermal element of various 1-D structures and also able to Perform simple 1-D modal analysis	4	Analyse
CO6	Interpret the results of finite element analyses and make an assessment of the results in terms of modelling (physics assumptions) errors, discretization (mesh density and refinement toward convergence) errors, and numerical (round-off) errors.	5	Evaluate

								· · · · · ·							
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PS	PS
										0	1	2	1	O2	03
CO	3	1	2	1	3	2	1	2	2	2	-	2	3	3	-
1															
CO	3	1	2	1	3	2	1	2	2	2	-	2	3	3	-
2															
CO	3	1	2	1	3	2	1	2	2	2	-	2	3	3	-
3															
CO	3	1	2	1	3	2	1	2	2	2	-	2	3	3	-
4															
CO	3	1	2	1	3	2	1	2	2	2	-	2	3	3	-
5															
CO	3	1	2	1	3	2	1	2	2	2	-	2	3	3	-
6															

Un	Contents	No.o	COs
it		f	
		Hou	
		rs	
1	Fundamental Concepts of FEA		
	Brief history of FEM, Finite Element terminology (nodes, elements, domain,	6	CO1
	continuum, degrees of freedom, loads & constraints), general steps involved in	Hrs.	
	FEM, applications of FEM in various fields, advantages and disadvantages of		
	FEM, consistent units system, essential and natural boundary conditions,		
	symmetric boundary conditions.		
	Types of Analysis (Introduction): Linear static analysis, Non-linear analysis,		
	Dynamic analysis, Linear buckling analysis, Thermal analysis, Fatigue analysis,		
	Crash analysis.		
2	1D Elements and their Analysis		
	Types of 1D elements, displacement function, global and local coordinate	6	C02
	systems, polynomial form of interpolation functions- linear, quadratic and	Hrs.	
	cubic, properties of shape function, primary and secondary variables.		

	Formulation of elemental stiffness matrix and load vector for bar, truss and								
	beam using FEA approach, Assembly of global stiffness matrix and load								
	vector, properties of stiffness matrix, stress and reaction forces calculations								
3	Introduction to 2D Elements								
	Two-Dimensional Stress Analysis: Plane Stress/Strain problems in 2D	6	C03						
	elasticity, constitutive relations	Hrs.							
	Constant Strain Triangle(CST), Linear Strain Rectangle (LSR), displacement								
	function, Pascal's triangle, compatibility and completeness requirement,								
	geometric isotropy, convergence requirements.								
	Formulation of element stiffness matrix and load vector for Plane Stress/Strain								
	problems								
	Assembly of global stiffness matrix and load vector, Boundary conditions,								
	solving for primary variables (displacement), stress calculations								
4	Isoparametric Elements								
	Concept of isoparametric elements, Terms isoparametric, super parametric and	6	C04						
	subparametric.	Hrs.							
	Coordinate mapping : Natural coordinates, Area coordinates (for triangular								
	elements), higher order triangular and quadrilateral elements (Lagrangean and								
	serendipity elements), geometry associative mesh, quality checks, mesh								
	refinement- p vs h refinements, Uniqueness of mapping - Jacobian matrix.								
5	1D Steady State Heat Transfer and Dynamic Analysis								
	Introduction, Governing differential equation, steady-state heat transfer	6	C05						
	formulation of 1D element for conduction and convection problem, boundary	Hrs.							
	conditions and solving for temperature distribution.								
	Types of dynamic analysis, General dynamic equation of motion, point and								
	distributed mass, lumped and Consistent mass, Mass matrices formulation of								
	bar element.								
6	Introduction to 3-D analysis								
	3 D problems in stress analysis, Mesh generation. Techniques such as semi-	6	CO6						
	automatic and fully Automatic use of software such as ANSYS using	Hrs.							
	Hexahedral and Tetrahedral Elements.								

Text Books

Sr. No.	Title of Book	Authors	Publication House	Accession No
1	A First Course in the Finite	Daryl L. Logan	Logan, 2007	
	Element Method			
2	Finite Element Analysis	G Lakshmi	B S Publications	
		Narasaiah		
3	Text book of Finite Element	P. Seshu	PHI Learning Private	
	Analysis		Ltd. , Delhi	

Reference Books

Sr. No.	Title of Book	Authors	Publication House	Accession No
1.	Fundamental of Finite Element Analysis	David V. Hutton	Tata McGraw-Hill	
2.	Finite Element Procedures	Bathe K. J.,	PHI (P) Ltd., New Delhi	
3.	Concepts and Applications of Finite Element Analysis	R. D. Cook	Wiley, India	

HEATING VENTILATION AND AIR CONDITIONING (ME402)

Tea	ching Scheme	Examination Scheme			
Lectures:	3 Hrs. / Week	CIA	20 Marks		
		Insem Exam:	30 Marks		
Practical	-	End Sem Exam:	50 Marks		
Cradits	3	Total	100 Marks		
	5				

Prerequisite Course: Basic Thermodynamics and Heat Transfer

Course Objectives:

- 1. To understand and compare different refrigerants with respect to properties, applications and Environmental issues.
- 2. To Understand and apply the Psychrometry for air conditioning applications.
- 3. To Understand, conceptualize and determine cooling load of the building
- 4. To Explain working of types of desiccant, evaporative, thermal storage, and heat pump airconditioning systems
- 5. To Design the Vapour Compression refrigeration system for various applications
- 6. To Design the duct for various air conditioning systems

COn	Course Outcomes	Blooms Taxonomy			
	Course Outcomes	Level	Descriptor		
CO1	Determine COP of Vapour Compression Refrigeration System and Explain the properties, applications and environmental issues of different refrigerants	3	Apply		
CO2	Understand Psychrometric processes and Calculate different psychrometric properties.	3	Apply		
CO3	Estimate the heating load and cooling loads for buildings.	3	Apply		
CO4	Explain the working of Desiccant-Based Air Conditioning Systems and heat pump systems.	2	Understand		
CO5	Estimate the thermal performance of refrigeration system component.	3	Apply		
CO6	Design of air distribution system and Calculate pressure drop and size of ducts.	3	Apply		

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	-	-	1	2	2	3	3	-	1	-	-	3
CO2	3	2	2	-	-	-	-	-	3	3	-	1	-	-	3
CO3	3	2	2	-	-	-	-	-	3	3	-	1	-	-	3
CO4	3	1	-	-	-	-	-	-	3	3	-	1	-	-	3
CO5	3	2	2	-	-	-	-	-	3	3	-	1	-	-	3
CO6	3	2	2	1	1	1	-	-	3	3	-	1	-	-	3

Unit	Contents	No.	COs
		of	
		Hours	
1	Refrigeration Systems and Refrigerants		
	Introduction to refrigeration, applications of refrigeration, simple saturated Vapour compression refrigeration cycle, effect of change in evaporator and condenser pressure, effect of pressure drops, methods of improvement in the performance of the cycle like sub cooling, superheating, use of heat exchanger , actual Vapour compression refrigeration cycle, simple Vapour Absorption refrigeration System.	6 Hrs.	CO1
	Refrigerants Survey of Refrigerants, Designation of Refrigerants, Selection of a Refrigerant, Thermodynamic, Chemical, Physical, and safety Requirements, Secondary Refrigerants, Ozone depletion, Global warming, greenhouse effect, Environment friendly refrigerant R134a, R410a, R600a, R290, R32.		
2	Psychrometrics of Air – Conditioning Processes		
	Psychrometric properties, Psychrometric chart, Psychrometric processes, BPF of coil, ADP, adiabatic mixing of two air streams, SHF, RSHF, GSHF, ESHF. Factors contributing to cooling load, Numerical based on psychrometric processes. Thermal Comfort: Basic parameters, Thermodynamics of human body, Human comfort, Factors affecting thermal comfort, comfort chart and limitations, effective temperature, factors governing effective temperature, design considerations.	6 Hrs.	CO2
3	Heat Load Estimation in Building Structures:		
	Cooling load calculations – Various heat sources contributing to heat load , solar load ,equipment load ,infiltration air load , duct heat gain , fan load , moisture gain through permeable walls and fresh air load, internal and external factor , sol-air temperature, Decrement factor & time lag method, Equivalent Temperature Differential	6 Hrs.	CO3

	(ETD), cooling load calculation using CLTD methods, cooling load calculations using software.					
4	Advanced Air-conditioning Systems					
	 Advanced AC Systems: Working of summer, winter and year-round AC systems, all air system, all water system, air water system, variable refrigerant flow and variable air volume systems, unitary and central air conditioning. Desiccant-Based Air Conditioning Systems : Introduction, Sorbents & Desiccants, Dehumidification, Liquid Spray Tower, Rotary Desiccant Dehumidifiers, Evaporative-Cooling Air Conditioning Systems, Thermal Storage Air Conditioning Systems Heating systems – warm air systems, hot water systems, steam heating systems, panel and central heating systems, Heat pump circuit and Heat sources for heat pump. 	6Hrs.	CO4			
5	Refrigeration System Components					
	Types of Compressors, Thermodynamic Processes during Compression, Principal Dimensions of a Reciprocating Compressor, Performance Characteristics of a Reciprocating Compressor, Capacity Control of Reciprocating Compressors, Rotary Compressors, Screw Compressors, Centrifugal Compressors, Digital scroll compressors Construction, working and Types of condensers, evaporators and expansion devices, Capillary Tube and Its Sizing. Types & Application of Chillers	6 Hrs.	CO5			
6	Air Distribution Systems					
	Ventilation and infiltration: Natural ventilation, Mechanical ventilation. Ducts: Types of Ducts, duct fittings, Dampers, Flexible ducts, classification of duct, Duct Gauge Selection, Comparison Between Different Shapes of Duct, Duct Materials, air flow through simple duct system, pressure losses in duct (friction losses, dynamic losses) equivalent diameter, Duct Designing Methods : Equal Friction Method, velocity reduction and static regain method Air handling unit Air handling unit, Fan Coil Units & Fresh air handling units, types of fans used air conditioning applications, fan laws, filters, supply and return grills, sensors (humidity, temperature, smoke). Types of Air Terminal Device, Selection And Sizing of Air Terminal Device	6 Hrs.	CO6			

Books

S.N.	Title of Book	Authors	Publication House	Accession No
1.	Refrigeration and Air conditioning	Arora, C.P	Tata-McGraw Hill	
2.	Basic Refrigeration and Air Conditioning	P.N. Ananthanarayanan	McGraw Hill	
3.	Refrigeration and Air conditioning.	Manohar Prasad	New Age International	
4.	Elementary Refrigeration and Air- conditioning	Stoecker, W.F., and Jones, J.W.,	McGraw Hill , 2002	
5.	Principle of Refrigeration	Roy J.Dossat	Wiley Eastern limited, 1987 Third Edition	
6.	Refrigeration and Air conditioning	R.S. Khurmi J.K. Gupta	Eurasia Publishing House (P) Ltd.	
7.	ASHRAE Handbook – Refrigeration.	ASHRAE Technical Committees, Task Groups, and Technical Resource Groups	ASHRAE	
8.	Refrigeration and Air Conditioning.	Langley, Billy C.	Engie wood Cliffs (N.J) Prentice Hall 1986.	
9.	Air Conditioning Engineering.	W.P.Jones	English Language Book Society Edward Arold pub.	
10	Refrigeration and Air Conditioning Technology	Whitman, Johnson, Jomcztk	Delmar Thomson learning	

DYNAMICS OF MACHINES (ME403)

Tea	ching Scheme	Examination Scheme		
Lectures:	3 Hrs. / Week	CIA	20 Marks	
Practical:	-	In Sem Exam:	30 Marks	
Credits:	3	End Sem Exam:	50 Marks	
		Total:	100 marks	

Prerequisite Course: (if Any) Machine Design-I,II, Strength of Materials, and Applied Mechanics,

Kinematics

Course Objectives:

- 1. To Provide fundamentals of vibration and noise so that the students can solve real engineering problems and design engineering systems.
- 2. To Make students able to prepare a mathematical model of the mechanical system in the form of spring, mass and damping elements.
- 3. To Provide knowledge of gyroscope, flywheel and governor
- 4. To Make aware about the instrumentation used for measurement of vibration and noise
- 5. To Provide fundamentals of balancing of rotating and reciprocating masses
- 6. To Provide knowledge of free and forced vibrations

COl	Course Outerman	Blooms Taxonomy			
CO'S	Course Outcomes	Level	Descriptor		
CO1	Calculate the gyroscopic couple acting on applications like ships, aero planes, two and four wheeler	3	Apply		
CO2	Determine the dimensions of flywheel based on the turning moment diagram and calculate the characteristics of governors.	3	Apply		
CO3	Determine balancing force for rotating and reciprocating masses using static and dynamic balancing method	3	Apply		
CO4	Calculate natural frequency for a single degree of freedom free vibratory systems	3	Apply		
CO5	Determine response to forced vibration due to harmonic excitation, base excitation and excitation due to unbalance forces.	3	Apply		
CO6	Determine vibration and noise measurement parameters for industrial / real life applications.	3	Apply		

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	3	3	-	-	-	-	-	2	-	-	-	2	-	-
CO2	3	3	3	-	-	-	-	-	2	-	-	2	3	-	-
CO3	3	2	2	-	-	-	-	-	-	2	-	2	2	-	-
CO4	3	3	3	-	-	-	-	-	-	2	-	-	2	-	-
C05	2	3	2	-	-	3	-	2	-	2	-	2	2	-	-
CO6	3	3	2	-	2	2	-	2	-	-	-	2	3	-	-

Unit	Contents	No. of Hours	COs
1	Gyroscope		
	Introduction- Gyroscopic couple and its effect on spinning bodies, Gyroscopic effect on naval ships during steering, pitching and rolling, Ship stabilization with gyroscopic effect. Two wheeler and four wheeler on curved path- effect of gyroscopic and centrifugal couples, maximum permissible speeds on curve paths, Gyroscopic effect due to lateral misalignment of rigid disc mounted on shaft, gyroscopic effects in airplanes, Introduction to MEMS based gyroscopes	6 Hrs.	CO1
2	Flywheel and Governors		
	Fundamental equation of motion, torque analysis, Significance of turning moment diagram for input and output shaft, Fluctuation of speed & energy, disk and rimmed flywheels, stresses in flywheel rim and arms, design of disc and rimmed flywheels for various applications, standard dimensions of flywheels, flywheels for punching press.	8 Hrs.	C02
	Comparison between governors and flywheel, Types of centrifugal governors, inertia governors, Force analysis of gravity loaded governors– Watt, Porter, Proell, Force analysis of spring loaded governors Hartnell, Hartung, Wilson Hartnell, Force analysis of spring and gravity loaded governor, Performance characteristics of governor stability, Sensibility, Isochronisms, Hunting, Governor effort and governor power, Coefficient of insensitiveness,		
3	Balancing of rotating and reciprocating masses		
	Causes of unbalance, Balancing of rotating masses-static and dynamic balancing, two plane balancing. Balancing of several masses rotating in the same plane and balancing of several masses rotating in different planes. Balancing of reciprocating masses –identification of inertia, forces for reciprocating masses in engine mechanisms, partial primary balancing of	6 Hrs.	C03

	single cylinder engines and locomotives, balancing of multi cylinder engines, V-twin engines and radial engines-direct and reverse crank methods. Balancing machines.		
4	Free Vibrations		
	Single degree of freedom systems– free vibration, fundamentals of vibration, Types of vibration, equivalent stiffness and damping. Formulation of differential equation of motion using Newton law, D Alembert principle and energy method. Natural frequency for longitudinal, transverse and torsional vibratory systems.	8 Hrs.	C04
	Damped free vibrations: Types of damping, free vibrations with viscous damping- over damped, critically damped and under damped systems, logarithmic decrement Natural frequency of free torsional vibrations, two rotor systems, torsionally equivalent shaft.		
5	Forced Vibrations		
	Single degree of freedom forced vibrations of longitudinal systems, frequency response to harmonic excitation, Excitation due to reciprocating and rotating unbalance, base excitation, and magnification factor, Concept of force and motion transmissibility.	6 Hrs	CO5
	Critical speed of shaft having single rotor of undamped systems.		
6	Vibration and Noise Measurement		
	Vibration Testing and modal analysis, Instruments for measurement of displacement, velocity and acceleration and frequency of vibration. Accelerometers, Impact hammer, Vibration shaker-Construction, principles of operation and uses, FFT Vibration Analyzer, Vibration based condition monitoring, Analysis of Vibration Spectrum, Standards used for vibration measurement, Numerical on vibration measurement sensors.	6 Hrs.	CO6
	Fundamentals of noise Sound concepts, Decibel Level, sound pressure level, Logarithmic addition, subtraction and averaging, sound intensity, noise measurement. Numerical on noise level measurement.		

Text Books

Sr. No.	Title of Book	Authors	Publication House	Accession No.
1	Theory of Machines	S. S. Rattan	McGra-Hill	
2	Theory of Machines	T Beven	CBS Publishers	
3	Mechanical Vibrations	Grover G. K.	New Chand and Bros., Roorke	620.3, GRO-TB, 58742
4	Mechanical Vibrations	S. S. Rao	Pearson Education Inc. New Delhi.	620.3, RAO-TB, 23294
5	Mechanical Vibrations	V. P. Singh	Dhanpat Rai and Co.	
6	Vibration and Noise for Engineers	Kewal Pujara	Dhanpat Rai and Co.	621.811, PUJ-TB, 70437

Reference Books

Sr. No.	Title of Book	Authors	Publication House
1	Theory of Machines and Mechanisms-	J.E.Shigley:	Tata McGraw Hill
2	Vibration of Mechanical System	Alok Sinha	Cambridge university Press, India
3	Vibration Problems in Engineering.	Weaver	Wiley India Pvt. Ltd, New Delhi.
4	Mechanical Vibration	William J Palm III,	Wiley India Pvt. Ltd, New Delhi
5	Engineering Vibration	Daniel J. Inman	Pearson Education Inc.
6	Mechanical Vibrations	S.Graham Kelly	Tata McGra-Hill

HEAT TRANSFER EQUIPMENT DESIGN (ME404A)

	Teaching Scheme	Examir	nation Scheme
Lectures:	4 Hrs. / Week	CIA	20 marks
		Insem Exam	30 Marks
Practical:	-	End Sem Exam:	50 Marks
Credits:	4	Total:	100 Marks

Prerequisite Course: Basic Thermodynamics and Heat Transfer

Course Objectives:

- 1. To Understand the basic concept and design methodology of heat exchangers.
- 2. To Identify the design requirements for different types of heat exchangers
- 3. To Define the important heat-exchanger design parameters
- 4. To Perform sizing of a given type of heat exchanger for a specific application.
- 5. To Design and analyze various heat exchangers using heat exchanger design standards and codes
- 6. To Design and analyze air cooled heat exchanger using heat exchanger design standards and codes.

COs	Course Outcomes	Blooms Taxonomy			
		Level	Descriptor		
CO1	Understand and explain different types of heat exchangers and its performance.	3	Apply		
CO2	Select and Design the double tube heat exchangers for process industry	3	Apply		
CO3	Design the Shell & Tube Heat Exchangers for specified conditions	3	Apply		
CO4	Design the condensers and evaporators for refrigeration applications	3	Apply		
CO5	Design the compact heat exchangers	3	Apply		
CO6	Design the Air-Cooled Heat Exchangers	3	Apply		

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	-	-	-	1	1	3	3	-	1	-	1	2
CO2	3	2	1	-	-	-	1	1	3	3	-	1	-	1	2
CO3	3	2	2	-	-	-	1	1	3	3	-	1	-	1	3
CO4	3	2	2	-	-	-	1	1	3	3	-	1	-	1	3
CO5	3	2	1	-	-	-	1	1	3	3	-	1	-	1	3
CO6	3	2	2	2	2	-	1	1	3	3	-	1	-	1	2

Unit	Contents	No. of	CO					
1	Introduction to Heat Exchangers:							
	Introduction: Heat exchanger types and construction, heat transfer and fluid flow fundamentals. Types of heat exchangers: Derivations for counter flow and parallel flow heat exchangers, LMTD and ε-NTU method, double pipe heat exchangers, cross flow heat exchangers, shell-and-tube heat exchangers, and TEMA standards. Fouling of Heat Exchanger: Introduction, causes of fouling, types of fouling, effect of fouling, fouling factor, overall heat transfer coefficient with fouling, fouling factors for various process and services, methods to reduce fouling, cleaning process of fouled heat exchanger							
2	Double Pipe Heat Exchanger							
	Constructional features, Applications, Thermal and Hydraulic design of inner tube and annulus, hairpin heat exchanger with bare and finned inner tube, total pressure drop, overall heat transfer coefficient, Rating and sizing problem. Correlations for tube side pressure drop and heat transfer coefficients. Pressure drop and heat transfer coefficient correlations for shell side flow, different methods to enhance the heat transfer coefficient.							
3	Shell & Tube Heat Exchangers							
	Constructional features; Applications; Effectiveness-NTU method for heat exchanger design / analysis, ϵ -NTU method, P-NTU method, Rating and sizing	6 Hrs.	CO					

	problem; Correlations for tube side pressure drop and heat transfer coefficients, Pressure drop; Kern's, and Bell Delaware's method, heat transfer coefficient correlations for shell side flow.		
4	Design of Two Phase Heat Exchangers		
	Design considerations of heat exchangers for refrigeration and air conditioning applications, thermal design of heat exchanger used for refrigeration applications, air cooled condenser, Design considerations of Evaporative condensers. Evaporator : Evaporator for refrigeration and air-conditioning, thermal analysis of evaporator, standards for evaporators and condensers,	6 Hrs.	CO 4
5	Compact heat exchangers		
	Classification of compact heat exchangers, Plate heat exchangers, plate fin heat exchanger, tube fin heat exchanger, coiled tube heat exchangers, mini and micro channel heat exchangers, factors affecting on design of heat exchanger, Thermal analysis in compact heat exchanger.	6 Hrs.	CO 5
6	Air-Cooled Heat Exchangers:		
	Air as coolant for industrial processes; custom-built units; fin-tube systems for air coolers; fin tube bundles; thermal rating; tube side flow arrangements; cooling air supply by fans; cooling air supply in natural draft towers. Mechanical Design of Heat Exchangers: Design standards and codes, key terms in heat exchanger design, and thickness calculation for major components such as tube sheet, shell, and tubes.	6 Hrs.	CO 6

Books

Sr. No.	Title of Book	Authors	Publication House	Accession No
1.	Fundamentals of Heat Exchanger Design	Ramesh K Shah,	Wiley Publication	
2.	Compact Heat Exchangers	Kays, V.A. and London, A.L	McGraw Hill	
3.	Process Heat transfer	Donald Q Kern	McGraw Hill	
4.	Heat Exchanger Design Handbook	Kuppan, T, Macel Dekker	CRC Press	
5.	T.E.M.A. Standard			

MATERIAL HANDLING EQUIPMENT DESIGN [ME404B]

Te	aching Scheme	Examina	tion Scheme
Lectures:	4 Hrs. / Week	CIA	20 Marks
Practical:	- Hrs./ Week	In Sem Exam:	30 Marks
Credits:	4	End Sem Exam:	50 Marks
		Total:	100 Marks

Prerequisite Course: (if Any)

Course Objectives:

- 1. To Understand the Fundamentals of Material Handling Equipment.
- 2. To Design various hoisting elements like, chains, Hemp and wire ropes, Pulley systems, Sprockets & drums, forged hooks and eye hooks and Girders.
- 3. To Design a Conveyors and Selection based on the Application.
- 4. To Design of Bucket and Cage Elevator

COs	Course Outcomes	Blooms Taxonomy			
		Level	Descriptor		
CO1	Select a proper material handling equipment suitable for applications	3	Apply		
CO2	Design belt conveyor for an engineering application	3	Apply		
CO3	Design cage and bucket elevator for an engineering application	3	Apply		
CO4	Design of a hoist for an engineering application	3	Apply		
CO5	Design of crane for an engineering application	4	Analyse		
CO6	Store material with a suitable packaging material	3	Apply		

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO
										0	1	2	1	2	3
CO1	2	2	2	-	2	-	-	2	2	2	-	2	2	-	-
CO2	2	2	2	-	2	-	-	2	2	2	-	2	2	-	-
CO3	2	2	2	-	2	-	-	2	2	2	2	2	2	-	-
CO4	2	3	2	-	2	-	-	2	2	2	-	2	2	-	-
CO5	3	2	2	-	2	-	-	2	2	2	-	2	2	-	-
CO6	3	3	2	-	2	-	-	2	2	2	2	2	2	-	-

Unit	Contents	No.	COs
		of	
		Hours	
1	Materials Handling Equipment		
	Objectives of material handling system, Principal groups of materials handling	6 Hrs.	CO1
	equipment and classification, Scope of Material Handling, Criteria for selection		
	of Material Handling Equipment's, Basic kind of material handling problems,		
	Various methods to analyze material Handling problems.		
2	Conveyors		
	Conveyor Design: Introduction to Apron conveyors, Pneumatic conveyors, Belt	6 Hrs.	CO2
	Conveyors, Chain conveyors, Screw conveyors and vibratory conveyors and		
	their applications, Design of Belt conveyor- Belt selection procedure and		
	calculation of drop energy, Idler design.		
3	Design of bucket and Cage Elevator		

	Design of bucket and Cage Elevator: Introduction, Types of Bucket Elevator,	6 Hrs.	CO
	Design of Bucket Elevator- loading and bucket arrangements, Cage elevators,		
	shaft way, guides, counter weights.		
4	Design of Hoists		
	Design of Hoists: Design of hoisting elements: Welded and roller chains – Hemp	6 Hrs.	CO4
	and wire ropes - Design of ropes, pulleys, pulley systems, sprockets and drums,		
	Load handling attachments. Design of forged hooks and eye hooks – crane grabs		
	- lifting magnets - Grabbing attachments - Design of arresting gear -Brakes:		
	shoe, band and cone types		
5	Design of Cranes		
	Design of Cranes: Hand-propelled and electrically driven overhead traveling	6 Hrs.	CO5
	cranes; Traveling mechanisms of cantilever and monorail cranes , goliath cranes;		
	design considerations for structures of rotary cranes with fixed radius ; fixed post		
	and overhead traveling cranes; Stability of stationary rotary and traveling rotary		
	cranes.		
6	Packaging and storage of bulk materials		
	Packaging and storage of bulk materials: Steps for design of packages, protective	6 Hrs.	CO6
	packaging, testing the physical characteristics of packaging, container testing,		
	types of storage and industrial containers, Automatic guided vehicles, Automatic		
	storage and retrieval system.		
1		1 1	

Text Books

Sr.	Title of Book	Authors	Publication House	Accession No
No.				
1.	Material Handling Equipment	N.Rundenko	Peace Publisher,	
			Moscow	
2.	Material Handling Equipment	M.P. Alexandrow	MIR Publishers,	
			Moscow	

3.	Belt conveyors for bulk			Manuf	acturer's		
	materials Conveyor Equipment			Associ	ation		
4.	Material Handling Handbook	Raymond A	١	John	Wiley	&	
		Kulwiec		Sons.			
5.	Engineering Science and	Ishwar G Mulani					
	application design for belt	and Mrs. Madhu I					
	conveyor	Mulani,					

Reference Books

Sr.	Title of Book	Authors	Publication House	Accession No
No.				
1	Motoriala Handling Equipments	Alexandrey M	MID Dublich and	
1.	Materials Handling Equipments,	Alexandrov, M,	MIK Publishers.	
	5 11 X 1 X 11			
2.	Bulk Materials Handling	Jacob	Springer Science	
	Handbook	Fruchtbaum	+Business Media	

WELDING APPLICATION TECHNOLOGY (ME404C)

Tea	ching Scheme	Examination Scheme		
Lectures:	4 Hrs. / Week	CIA	20 Marks	
Practical:	-	INSEM	30 Marks	
		End Sem Exam:	50 Marks	
Credits:	4	Total:	100 Marks	

Prerequisite Course: (if Any)

Course Objectives:

- 1. To impart a sound understanding of principles of different fusion welding processes.
- 2. To study welding materials, soldering and brazing
- 3. To study weld joint design
- 4. To study weld defects and their remedial techniques
- 5. To study welding testing methods
- 6. To study welding residual stresses, distortions and weld standards.

COs	Course Outcomes	Blooms Taxonomy		
005		Level	Descriptor	
CO1	Select the welding process for application	2	Understand	
CO2	Select welding process to join metals and non-metals	1	Remember	
CO3	Analyse and design weld joints	3	Apply	
CO4	To find weld defects and weld failures	3	Apply	
CO5	Test the welds using destructive and non-destructive methods	2	Understand	
CO6	Use weld standards for welding applications	3	Apply	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	1	1	1	-	-	-	-	-	-	-	-	-	3
CO2	3	1	1	1	1	-	-	-	-	-	-	-	-	-	3
CO3	3	3	3	2	2	-	-	-	-	-	-	-	-	-	3
CO4	3	2	2	3	3	-	-	-	-	-	-	-	-	-	3
CO5	3	3	1	3	3	-	-	-	-	-	-	-	-	-	3
CO6	3	1	1	1	2	-	-	-	-	-	-	-	-	-	3

Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs):

Unit	Contents	No. of	COs
		Hours	
	Welding Processes		
1	Classification of welding processes; Gas welding; Arc welding; arc physics, power	6Hrs.	CO1
	source characteristics, Manual metal arc welding, Gas tungsten arc welding, CO2		
	welding, pulsed and synergic MIG welding, FCAW, Submerged arc welding (SAW),		
	Narrow gap submerged arc welding, Electro slag and Electro gas welding Plasma		
	welding, Concepts, processes and applications, keyhole and puddle-in mode of		
	operation, low current and high current plasma arc welding and their applications;		
	Magnetically impelled arc butt (MIAB) welding, Resistance welding, Concepts, types		
	and applications, Flash butt welding, Stud welding and under water welding		
	Welding materials, Soldering and Brazing		
2	Different types of materials, metals and non-metals, their applications and suitability for	6Hrs.	CO2
	different applications.		
	Soldering: Techniques of soldering, solders, phase diagram, composition, applications		
	Brazing: Wetting and spreading characteristics, surface tension and contact angle		
	concepts, brazing fillers, role of flux and characteristics, atmospheres for brazing,		
	adhesive bonding		
	Analysis and Design of Welds		
3	Type of weld joints, joint efficiency, factor of safety, symbols, selection of edge	6Hrs.	CO3

	preparation, design considerations, types of loading Permissible stress, allowable		
	defects, computation of stresses in welds, weld size calculation, code requirement for		
	statically loaded structures, Design for fluctuating and impact loading - dynamic		
	behaviour of joints - stress concentrations - fatigue analysis - fatigue improvement		
	techniques - permissible stress- life prediction Concept of stress intensity factors -		
	LEFM and EPFM concepts - brittle fracture- transition temperature approach - fracture		
	toughness testing, application of fracture mechanics to fatigue		
4	Weld Defects and Prevention		
	Weld defects and their analysis- Cracks, Inclusions, Lack of fusion, Porosity, Undercut,	6	CO4
	Poor penetration, burn through, Under-fill, Excess reinforcement, Spatter, Over-	Hrs.	
	roll/Overlap, Whiskers, Mechanical damage, methods to minimise weld defects.		
5	Inspection of Welding	6	CO5
		Hrs.	
	Visual Inspection- tools, applications and limitations. Liquid Penetrant Inspection,		
	Magnetic particle inspection, Magnetic particle inspection, Ultra sonic testing (UT), A,		
	B and C scan - Time of Flight Diffraction (TOFD), Radiography testing (RT), X ray and		
	gamma radiation sources, Fluoroscopy/Real- Eddy current testing, Thermography,		
	Optical & Acoustical holography		
6	Welding residual stresses, distortions and welding standards		
	Welding residual stresses - causes, occurrence, effects and measurements - thermal	6	CO5
	and mechanical relieving; types of distortion - factors affecting distortion - distortion	Hrs.	
	control methods - prediction - correction, jigs, fixtures and positioners		
	WELDING CODES AND STANDARDS:		
	Design requirements, allowable stress values, workmanship and inspection, introduction		
	to welding codes and standards, AWS D1.1		
	Process and product standards for manufacturing of pipe - welding procedure and		
	welder qualification, field welding and inspection, API 1104 and API5L Design		
	requirements, fabrication methods, joint categories, welding and inspection, post weld		
	heat treatment and hydro testing, ASME II, V, VIII and IX Welding procedure		
	specification, procedure qualification records, performance qualification, variables		
	Introduction to materials standards and testing of materials, consumables testing and		

Text Books

Sr. No.	Title of Book	Authors	Publication House	Accession No
1	Welding Technology and Design,	V. M.	New age. 2002	
		Radhakrishnan,		
2	Welding Technology,	Dr. O. P. Khanna,	Reprint: 200	
3	Welding Engineering and	Parmar R S,	Khanna Publishers,	
	Technology,		1997	
4	Advanced Welding processes-	Jecob Kuran	Jaico Publications	
	Vol-I, II, III			

Reference Books

Sr. No.	Title of Book	Authors	Publication House	Accession No
1	Materials and Applications - Metal	Schwartz M.	McGraw-Hill, 1979	
	Joining Manual',			
2	'Testing of Metallic Materials',	Suryanarayana,	Prentice Hall India,	
			1979	
3	Practical Non – Destructive Testing,	Baldev raj,	Narosa Publishing	
			House(1997)	
4	'Design of Weldments',.	Omer W. B.,	Lincoln Arc Welding	
		James.F	Foundation, 1991	
5	'Weldment Design',	Bhattacharya.M	Association of	
		,	Engineers,1991	
6	Welding Codes:			
	1. AWS D1.1 Structural Welding Code 2. API 5L			
	3. API 1104			
	4. ASME Section VIII - Division 1			
	6. ASME Section II Part A and C			

DATA SCIENCE (ME404D)

Tea	ching Scheme	Examination Scheme		
Lectures:	4 Hrs. / Week	CIA	20 Marks	
		INSEM	30 Marks	
Practical:	-	End Sem Exam:	50 Marks	
Credits:	4	Total:	100 Marks	

Prerequisite Course: Basic understanding of statistics and programming

Course Objectives:

- 1. To introduce students to the basic concepts of data science and Python programming
- 2. Classify and recognize different types of data
- 3. To understand the data science techniques for different applications
- 4. To acquire an in-depth understanding of data exploration and data visualisation
- 5. Identify visualisation for the data analysis problem
- 6. Analyse different types of data for inferring meaning

60	Course Outcomes		Bloom's Taxonomy		
COs			Descriptor		
CO1	Describe fundamentals of data science, python programming	2	Understand		
CO2	Discuss the mathematics and statistics involved in data science	2	Understand		
CO3	Discuss the data visualization techniques like plots and graphs	3	Apply		
CO4	Discuss the feature engineering techniques and their identification	2	Understand		
CO5	Describe the machine learning algorithms and data regression models	2	Understand		
CO6	Demonstrate the application of data science in mechanical engineering fields like design, production	2	Understand		

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	2	-	3	-	-	-	2	2	-	3	-	3	-
CO2	2	1	2	-	3	-	-	-	2	2	-	3	-	3	-
CO3	2	1	2	-	3	-	-	-	2	2	-	3	-	3	-
CO4	2	1	2	-	3	-	-	-	2	2	-	3	-	3	-
CO5	2	1	2	-	3	-	-	-	2	2	-	3	-	3	-
CO6	2	1	2	1	3	-	-	-	2	2	-	3	1	3	1

Unit	Contents	No. of Hours	COs
1	Introduction to Python for Data Science		
	Definition, importance of data science, application of data science, Basics of Python, Introduction to Python libraries, advanced Python, Python for data science, Python for text processing	6	CO1
2	Mathematical Foundation for Data Science		
	Probability, Bayes Theorem, Normal distribution, Central limit theorem, hypothesis testing, derivative application theorem (maximisation)	6	CO2
3	Data Visualisation Techniques		
	Basic of data visualisation, types, mean, median, histogram, box plots, bar graphs, pair plots, scatter diagrams	6	СО
4	Feature Engineering Techniques		
	Types of bias systems, dummy variables, conversion techniques, standardisation, and normalisation, outlier identification and removing techniques, skewness identification and its treatment	6.	CO4
5	Machine Learning Algorithms		
	Introduction to machine learning (ML), their algorithms, unsupervised machine learning - clustering techniques, supervised machine learning - classification techniques, linear regression and its techniques	6	CO5
6	Application of Data Science in Mechanical Engineering		
	Data science case studies in manufacturing systems, thermal systems, design systems	6	CO6

Text Books

Sr. No.	Title of Book	Authors	Publication House	Accession No/ISBN/ISSN No
1.	A Hands-On Introduction to Data Science	Chirag Shah	Cambridge University Press	ISBN: 9781108560412
2.	Data Science : Concepts and Practice	Vijay Kotu, Bala Deshpande	Morgan Kaufmann (Elsevier)	ISBN: 9780128147610
3	Foundations of Data Science	Avrim Blum, John Hopcroft, and Ravindran Kannan	Hindustan Book Agency	
4	Introduction to Machine Learning	Ethem Alpaydin	PHI Learning Pvt Ltd,	ISBN-978-81-203- 5078-6

Reference Books

Sr. No.	Title of Book	Authors	Publication House	Accession No/ISBN/ISSN No
1.	Exploring Data Science with R and the Tidyverse : A Concise Introduction	Jerry Bonnell and Mitsunori Ogihara	CRC Press, Taylor and Francis Group	ISBN 978103234170 5
2.	The Data Science Design Manual	Steven S. Skiena	Springer International Publishing AG	ISBN 978-3-319- 55443-3

ENERGY AUDIT AND MANAGEMENT (ME405A)

	Teaching Scheme	Examin	Examination Scheme			
Lectures:	3 Hrs. / Week	CIA Insem Exam:	20 Marks 30 Marks			
		End Sem Exam:	50 Marks			
Credits:	3	Total:	100 Marks			

Prerequisite Course: Basic Thermodynamics and Heat Transfer.

Course Objectives:

- 1. Understand and Analyze national and international energy scenario.
- 2. Calculate energy losses in process, equipment and plant.
- **3.** Showcase energy conservation opportunities in various mechanical systems and suggest methods for energy savings.
- 4. Analyze the energy data of industries and utilize the technical skills attained to carry out energy Audit.
- 5. Perform energy audit and use energy management tools
- 6. Apply practices of energy conservation in various sectors like domestic and commercial Industries.

COs	Course Outcomes	Blooms Taxonomy		
0.03		Level	Descriptor	
CO1	Explain the energy need and role of energy management	2	Understand	
CO2	Carry out energy audit of the institute/industry/organization	3	Apply	
CO3	Assessment of Energy saving opportunities using energy economics	3	Apply	
CO4	Analyze the energy conservation in thermal utilities	3	Apply	
CO5	Analyze the energy conservation in electrical utilities	3	Apply	
CO6	Analyze energy conservation in various sectors like domestic, and commercial industry.	3	Apply	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	-	-	1	2	2	3	3	-	1	-	-	3
CO2	3	2	2	-	-	-	-	-	3	3	-	1	-	-	3
CO3	3	2	2	-	-	-	-	-	3	3	-	1	-	-	3
CO4	3	1	-	-	-	-	-	-	3	3	-	1	-	-	3
CO5	3	2	2	-	-	-	-	-	3	3	-	1	-	-	3
CO6	3	2	2	1	1	1	-	-	3	3	-	1	-	-	3

Unit	Contents	No. of Hours	COs
1	Energy Scenario and Management		
	Energy Scenario, Global Energy Scenario and Indian Energy Scenario in various sectors and Indian economy, Concerns of Energy Security in India. Basics of Energy and its various forms , Energy Management and Audit ,Material and Energy Balance , Energy Action Planning-Financial Management -Project Management , Energy Monitoring and Targeting , Global Environmental Concerns	6 Hrs.	CO1
2	Energy Audit		
	Need of Energy Audit, Types of energy audit, Energy audit methodology, Energy audit instruments, Analysis and recommendations of energy audit, Benchmarking, Energy audit reporting, Introduction to software and simulation for energy auditing, Current Energy Conservation Act and Electricity Act and its features.	6 Hrs.	CO2
3	Energy Economics		
	Simple Payback Period, Return on Investment, Dynamic value of money, Discount Rate Cash flow, Time value of money, Formulae relating present and future cash flow - single amount, uniform series; Payback period; Return on Investment (ROI); Life Cycle cost. Costing of Utilities- specific costs of utilities like; all fuels stream, compressed air, electricity, water.	6Hrs.	CO3
4	Energy Efficiency in Thermal Utilities		
	Heat exchangers, Cooling towers, Compressors, Compressed air systems Fuels and Combustion, Boilers Steam System , Furnaces, Insulation and Refractory, FBC Boilers	6 Hrs.	CO4

	Cogeneration : Need, applications, advantages, classification, Introduction to Trigeneration, Waste heat recovery		
5	Energy Efficiency in Electrical Utilities		
	Electrical Systems-Electric Motors, HVAC and Refrigeration System, Fans and Blowers, Pumps and Pumping System, Lighting System, Diesel Generating System, Energy Efficient Technologies in Electrical Systems.	6 Hrs.	CO5
6	Energy conservation in Mechanical systems.		
	Energy conservation in Buildings, Heating, Ventilation and Air Conditioning System, Energy conservation in Boilers, Performance testing, efficiency Energy conservation in Steam Systems– Aspects of steam distribution, Steam Traps, Condensate and Flash-steam utilization, Energy conservation opportunities Case Studies: Energy Audit of Institute/MSMEs/Organization, Guidelines for Energy Manager and Energy Auditor examination conducted by BEE	6 Hrs.	CO6

Text Books

Sr. No.	Title of Book	Authors	Publication House	Accession No
1.	Bureau of Energy Efficiency Study material for Energy Managers and Auditors Examination: Paper I to IV.			
2.	Guide to Energy Management	Barney L. Capehart, Wayne C. Turner and William J. Kennedy	The Fairmont Press Inc.	
3.	Energy Management Principles	Craig B. Smith	Pergamon Press	
4.	Energy Auditing and conservation; Methods, Measurements, Management and Case Study	Hamies	Hemisphere Publishers	
5.	Energy Management Handbook	Albert Thumann P.E. CEM, William J. Younger CEM	The Fairmont Press Inc.,	

PRESSURE VESSEL AND PIPING SYSTEM DESIGN (ME405B)

Те	aching Scheme	Examina	Examination Scheme		
Lectures:	3 Hrs. / Week	CIA	20 Marks		
		In Sem	30 Marks		
Practical:	- Hrs./ Week	End Sem Exam:	50 Marks		
Credits:	3	Total:	100 marks		

Prerequisite Course: (if Any) Strength of Materials, and Applied Mechanics, Machine Design

Course Objectives:

- 1. To provide knowledge of design considerations used for pressure vessels used in process industries.
- 2. To make them aware about design procedures used for design of low and high pressure vessels
- To give exposure to the standard practice used for design of unfired pressure vessel as per IS 2825 code
- 4. To explore the fundamentals of piping used in process industries used for transportation of water, oil and gas.
- 5. To provide knowledge of design procedure of pipes as per ASME code
- 6. To make aware about the importance of designing supports for piping in proper handling of water, oil and gas.

CO's	Course Outeomos	Blooms Taxonomy		
	Course Outcomes	Level	Descriptor	
CO1	Design thin cylinders and storage vessels	3	Apply	
CO2	Design thick cylinders working under high pressure	3	Apply	
CO3	Design unfired pressure vessels as per IS 2825 code	3	Apply	
CO4	Explain design considerations of piping system and its components	2	Understand	
CO5	Design of piping system as per ASME B31.1 piping code.	3	Apply	
CO6	Design of supports for piping system	3	Apply	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	2	1	-	2	-	2	2	2	-	-	2	-	-
CO2	3	1	2	-	-	-	-	-	2	2	-	-	2	-	-
CO3	3	2	3	1	-	3	-	2	2	2	-	-	2	-	-
CO4	2	1	2	-	-	2	-	2	2	2	-	-	2	-	-
CO5	3	2	3	1	-	3	-	2	2	2	-	-	2	-	-
CO6	2	1	2	-	-	-	-	-	2	2	-	-	2	-	-

Unit	Contents	No.of	COs
		Hours	
1	Basic considerations in pressure vessel design		
	General design procedure, Materials of constructions, design considerations,	6Hrs.	CO1
	operating conditions, pressure vessel codes, design of shell and its		
	components, thermal stresses in cylindrical shells, fabrication, inspection and		
	testing. Design of thin cylinders, design of storage vessels		
2	Design of high pressure vessel		
	Materials for high pressure vessels, solid walled vessels, Lame's equation,	6 Hrs.	C02
	Clavarino's, and Bernie's equations, Design of Pressure vessels subjects to		
	internal pressure, external pressure, design of hydraulic and pneumatic		
	cylinders, auto-frettage and compound cylinders, gasketed joints in		
	cylindrical vessels. Process hazards and safety measures in equipment design		
3	Design unfired pressure vessels		
	Modes of failures in pressure vessels, unfired pressure vessels, classification	6 Hrs.	C03
	of pressure vessels as per I. S. 2825 - categories and types of welded joints,		
	weld joint efficiency, stresses induced in pressure vessels, materials for		
	pressure vessel, thickness of cylindrical shells and design of end closures as		

	per code, nozzles and openings in pressure vessels, reinforcement of openings in shell and end closures - area compensation method, Supports for vessels-bracket, leg, skirt and saddle support		
4	Fundamentals of piping design		
	Codes & standards for piping engineering & design, piping material specifications and piping elements viz. pipes, fittings, flanges, gaskets, bolting, valves etc. Types of valves, Piping drawing layout and instruments diagram, Equipment layout, Basic of flow through pipes, Pipe sizing & piping hydraulics, Head sizing & piping hydraulics. Process mechanical equipments-Horizontal vessel, Vertical vessel, Storage tanks, Heat exchangers, Re-boiler, Towers and columns, Pumps, Compressors, Fans & Blowers, Steam & Gas turbines.	6 Hrs.	C04
5	Pining Design		
3	r iping Design		
5	Flow diagram, Piping layout and piping stress analysis; Flexibility factor and stress intensification factor; Design of piping system as per B31.1 piping code. Piping components - bends, tees, bellows and valves, design of process piping requirements as per ASME b31.3, protection of pipe and insulations, pipe design calculations, materials, size & wall thickness, hydraulic design of piping systems	6 Hrs.	C05
6	Flow diagram, Piping layout and piping stress analysis; Flexibility factor and stress intensification factor; Design of piping system as per B31.1 piping code. Piping components - bends, tees, bellows and valves, design of process piping requirements as per ASME b31.3, protection of pipe and insulations, pipe design calculations, materials, size & wall thickness, hydraulic design of piping systems Design of pipe supports	6 Hrs.	C05

Text Books

Sr. No.	Title of Book	Authors	Publication House	Accession No.
1	Process Equipment Design	M.V.Joshi & V.V. Mahajani	MacMillan, India Ltd., 1996	
2	Design of Piping Systems,	M. W. Kellogg Company		
3	Pipe Stress Engineering,	Liang-Chuan Peng and Tsen-Loong Peng	ASME Press	
4	Introduction to Pipe Stress Analysis,	Sam Kannappan	ABI Enterprise	
5	Pressure Vessels: Design and Practice	Somnath Chattopadhyay	CRC Press	

Reference Books

Sr. No.	Title of Book	Authors	Publication House
1	Pressure Vessel Design	Donatello Annaratone	
2	Pressure Vessels Design	J. F. Hanvey	Von Nostrand Co. Ind., 1963
3	ASME code Section 8th div 1, div 2		
4	Pressure Vessel Design Manual,	Demis R. Moss	Gulf Publishing Co., Houston, 1987
5	IS 2825		
6	Hand Book of Piping Design	Sahu G.K.	New Age International (P) Ltd. 1998,

INDUSTRIAL ENGINEERING AND OPERATION RESEARCH (ME405C)

Tea	ching Scheme	Examination Scheme		
Lectures: 3 Hrs. / Week		CIA:	20 Marks	
		In sem Exam:	30 Marks	
Credits:	3	End Sem Exam:	50 Marks	
		Total:	100 Marks	

Prerequisite Course: Physics, Mathematics, Basics' of Engineering Knowledge of machines used in manufacturing organizations.

Course Objectives:

1. To understand and apply tools and techniques, management principles, management practices of industrial engineering, in to manufacturing organization.

2. To understand concepts of an Organization, Engineering Productivity, Productivity improvement programme, Wages and incentives, Concept of wages, factors affecting wages, Job evaluation, merit rating, Numerical on Productivity.

3. To understand and apply concepts of Method Study, Steps, Tools and Techniques used in the Method Study, outline Process Chart, Principles of motion economy.

4. To understand and apply various basic concepts of Work Measurement, Calculation of Standard Time. Work Sampling, CPM, PERT and its Numerical.

5. To understand and apply Motivation Theories and Leadership Theories Managerial grid, professional and business ethics.

6. To study and understand basic concepts of entrepreneurship development like characteristics of successful entrepreneurs, sources of finance, record keeping system, analysis financial performance, break even analysis, technology and business, strategies for business growth, concept related to start-up and intellectual property rights (IPR).

COs	Course Outcomes	Blooms Taxonomy		
		Level	Descriptor	
CO1	Summarize the contribution of peoples to management.	2	Apply	
CO2	Determine, differentiate between two employees on the basis of productivity.	3	Apply	
CO3	Apply best suitable method of doing job in selected organisation.	3	Apply	
CO4	Calculate most optimum time of doing job in selected organization with selected method using work study's various tools and techniques.	3	Apply	
CO5	Determine Various Motivation Theories And Leadership Styles Applicable To An Organization Under Consideration.	3	Apply	
CO6	Apply various entrepreneurship development skill, characteristics, and strategies for business growth.	3	Apply	

Course Outcomes (COs): On completion of the course, learner will be able to -

Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs):

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3
CO1	2	1	2	2	3	2	3	3	3	3	1	1	1	1	1
CO2	3	3	2	3	3	3	3	3	3	3	1	1	1		
CO3	3	3	2	2	3	3	3	3	3	3	1	2	1	1	1
CO4	3	2	2	2	2	3	2	2	2	2	1	2	2	2	3
CO5	1	2	2	3	2	3	2	3	3	2	3	1	1		
CO6	1	2	1	3	2	2	2	3	3	2	3	2	2		

Unit	Contents	No.of	COs
		Hours	
1	Unit-I		
	Industrial Engineering: History, Development, Definition, Functions & Applications	8	CO1
	of Industrial Engineering. Tools and techniques of Industrial Engineering, Introduction	Hrs.	
	to work study and work content.		
	Evolution of Management Practices: Characteristics, objectives Functions, Principles		
	and Types of Management., Scientific Management-Contribution of F. W. Taylor,		
	Henry Fayol Gantt, Maynard and Indian contributors to the Management thought.		
2	Unit-II		
	Organization: Definition, Principles, Function and Types of organization structure,	6	CO2
	Different forms of Business-Proprietor, Partnership Firm, Private & Public limited	Hrs.	
	company, Cooperative, Private & Public Trusts.		
	Productivity Engineering Productivity: factor productivity, total productivity; labor		
	Productivity, measurement of Productivity, Productivity improvement techniques.		
	Productivity improvement programme. Wages and incentives: Concept of wages,		
	factors affecting wages, Job evaluation, merit rating, Numerical On Productivity.		
3	Unit – III		
	Method Study Steps, Tools and Techniques used in the Method Study, outline Process	6 Hrs.	CO3
	Chart, Flow process Chart, Symbols, Flow Diagrams, Two Handed Chart, String		
	diagram, Multiple Activity Chart, 5W and 1 H, Use of Motion Pictures and its analysis		
	SIMO chart, cyclograph Chronocylegraph. Developing, Presentation, Installation &		
	Maintenance of new Methods. Principles of motion economy.		
4	Unit – IV		
	Work Measurement Time Study: Aim & Objectives, Terminology & Tools, and Use	6	CO4
	of stopwatch procedure in making Time Study. Time Study Forms, Performance rating,	Hrs.	
	allowances and its types. Calculation of Standard Time. Work Sampling: Introduction		
	to work sampling. Determinations of Standard time using work Sampling. Synthetic &		
	Standard data Methods: Concepts, Introduction to PMTS, MTM1, WFS, and Basic		
	Motion Time Study. MTM2 & Other second Generation Methods, MOST and other		

Unit	Contents	No.of	COs
		Hours	
	advanced work measurement techniques. CPM, PERT And its Numerical.		
5	Unit –V		
	Motivation: Human Needs and Types of Motivation, Theories of Motivations-	6	CO5
	Maslow's theory, McGregor's Theory of X and Theory of Y, Herzberg's Theory of two	Hrs.	
	factor, David C .McClelland's, Theory of Achievement, Expectance/valence Theory of		
	Victor Vroom, Porter & Lawler's Model. Group dynamics: Types, characteristics,		
	objectives of Group Dynamics		
	Leadership: Definition, styles & functions of leadership, qualities for good leadership,		
	role of the leader, Theories of leadership, Managerial grid, professional and business		
	ethics.		
6	Unit –VI		
	Entrepreneurship development: Characteristics of successful entrepreneurs,	8	CO6
	communications skill, problem solving skill and process, Basic element of Business	Hrs.	
	plans, Sources of finance, Selection of Business location, Record keeping system,		
	Analysis financial performance, Break even analysis, Technology and Business,		
	Strategies for Business Growth, Concept related to start-up and Intellectual Property		
	Rights (IPR).		

Text Books:-

Sr. No.	Title of Book	Authors	Publication House	Accession Number
	Industrial Engineering			ISBN 81 219 1773
1.	and Production	M. Telsang	S. Chand Publication	5.
	Management			
2.	Work Study	O. P. Khanna	Dhanpat Rai Publications	
3	Industrial Organisation	Banga & Sharma	Khanna Publishers	ISBN 81-7409-
5.	& Engg. Economics	Danga & Sharma		078-9.

4.	Principles & Practices of Management	Chabra T. N.	Dhanpat lal & compony	
5.	IndustrialEngineeringandProductionManagement	Mahajan M.	Dhanpat Rai and Sons Publishers	ISBN-81-7700- 047-0.

Reference Books:

Sr. No.	Title of Book	Authors	Publication House	Accession Number
1.				
2.	Introduction to Work Study		ILO Universal Pub	ISBN 81 85027 06
3.	Motion and Time Study: : Design and Measurement of Work	Ralph M. Barnes	J. Wiley & Sons.	
4.	Essentials of management	Koontz Harold and Weihrich Heinz	Tata McGraw Hill publishing	ISBN 0-07- 0623030-x.
5.	Organizational Behaviour	Luthans f.	McGraw-Hill Company	ISBN 81-317- 05021
6.	Entrepreneurship: Ideas in Action	Cynthia L. Greene	Thomson	ISBN-981-243- 257-1

ADVANCED MATERIALS AND TECHNOLOGY (ME405D)

Tea	ching Scheme	Examination Scheme				
Lectures:	3 Hrs. / Week	CIA	20 Marks			
		Insem Exam:	30 Marks			
		End Sem Exam:	50 Marks			
Credits:	3	Total:	100 Marks			

Prerequisite Course: Material Science and Metallurgy

Course Objectives:

- 1. To study the nonferrous metals and alloys.
- 2. To understand different composite materials for engineering applications.
- 3. To make aware of various methods in Surface Modification Technology.
- 4. To understand Powder Metallurgical Technology and its engineering applications.
- 5. To study the different nanomaterials and their applications.
- 6. To study the biomaterials for various biomedical applications.

CO	Comme Orthogram	Blooms Taxonomy			
COS	Course Outcomes	Level	Descriptor		
CO1	Discuss Classification, importance, composition, properties and applications of nonferrous metals and alloys.	2	Understand		
CO2	Apply the rule of mixtures to calculate the mechanical properties such as modulus of elasticity of composite Materials.	2	Understand		
CO3	Predict suitable surface modification methods for a stated application.	3	Apply		
CO4	Explain various steps involved in powder metallurgical technology and its engineering applications.	3	Apply		
CO5	Describe various synthesis and processing methods and applications of nanomaterials.	3	Apply		
CO6	Predict suitable biomaterials for various biomedical applications.	2	Understand		

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	-	-	-	-	-	1	2	2	-	1	1	-	-
CO2	2	1	-	-	-	-	-	1	2	2	-	1	1	-	-
CO3	2	-	-	-	-	-	-	1	2	2	-	1	1	-	-
CO4	2	1	-	-	-	-	-	1	1	2	-	1	1	-	-
CO5	2	1	-	-	-	-	-	1	2	1	-	1	1	-	-
CO6	2	1	-	-	-	-	-	1	2	2	-	1	1	-	-

Unit	Contents	No. of Hours	COs
1	Non Ferrous Metals and Alloys		
	Classification of nonferrous metals. Importance of nonferrous metals in engineering applications & compositions, study of different mechanical properties: Cu & Cu based alloys, Al and Al based alloys, Ni and Ni based alloys, Co and Co based alloys, Titanium & its alloys, Tin & Lead base alloys, Bearing materials: important properties & applications.	6 Hrs.	CO1
2	Composite Materials		
	Introduction to Composite Materials, Classification, Particle reinforced composites, fiber reinforced composites-influence of fiber length, influence of fiber orientation and concentration, fiber phase, matrix phase, Polymer matrix composites, Metal matrix composites, Ceramic matrix composites, Carbon carbon composites, Hybrid composites, Structural composites-Laminar, sandwich panel, Numericals.	6 Hrs.	CO2
3	Surface Modification Technology		
	Importance of surface modification, classification of different methods & factors affecting : electroplating , PVD , CVD ,IVD, powder coating, shot blasting, ion implantation, plasma nitriding , anodizing, Surface preparation before coating & coating defects.	6 Hrs.	CO3
4	Powder Metallurgical Technology		
	Basic steps of powder metallurgy process, classification & methods of powder manufacturing, characteristics of metal powders, Conditioning of metal powders (Screening, Blending & mixing, annealing), Compaction techniques (cold compaction, hot compaction, Isostatic compaction & powder rolling), mechanism & importance of sintering, Pre-sintering & sintering secondary operations Advantages, limitations and applications of powder metallurgy. Production of typical P/M components (with flow charts), self-lubricated bearing, cemented carbides, cermets, refractory metals, electrical contact materials, friction materials, and diamond impregnated tools, friction plate,	6 Hrs.	CO4

	clutch plate, commutator brushes.		
5	Nanotechnology and Nanomaterials	6 Hrs	CO5
	Introduction to nanotechnology and nanomaterials, Classification of Nanomaterials, nanomaterial synthesis and processing, Methods for creating nanostructures- Mechanical grinding, Sol-gel process, Gas Phase synthesis of nanomaterials: Furnace method, Gas Condensation Processing, Laser ablation, Properties of Nanomaterials- Optical properties, Electrical Properties, Mechanical Properties, Magnetic properties, Selected Application of nanomaterials-Fuel cells, Nanocatalysts, Nanosensors, Tougher and harder cutting tools, high energy density batteries for electric vehicles, Advantages and disadvantages of Nanomaterials		
6	Biomaterials	6 Hrs	CO6
	Introduction Requirements for biomaterials Dental materials Cavity fillers Bridges, crowns and dentures Dental implants The structure of bone and bone fractures Replacement joints Hip joints Shoulder joints Knee joints Finger joints and hand surgery Reconstructive surgery Plastic surgery Maxillofacial surgery Ear implants Biomaterials for heart repair Heart valves.		

Text Books

Sr. No.	Title of Book	Authors	Publication House	Accession No
1.	Material Science and Metallurgy	Kodgire V. D.	Everest Publishing House	
2.	Material Science & Engg	Raghvan V	Prentice Hall of India, New Delhi	

Reference Books

Sr. No.	Title of Book	Authors	Publication House	Accession
				No
1.	Materials Science and Engineering	William D. Callister, R.Balasubramanium	Wiley India (P) Ltd.	
2.	Mechanical Metallurgy	G.E. Dieter	McGraw Hill International New Delhi	
3.	Materials Science & Engineering	Donald Askeland and Pradeep Fulay	Cengage Learning	

LAB-I FINITE ELEMENT ANALYSIS (ME406)

Tea	ching Scheme	Examination Scheme				
Practical:	2 hrs/week	Practical Exam:	50 Marks			
Credits:	1	Total:	50 Marks			

Prerequisite Course: Numerical Methods, Solid Mechanics, Theory of Elasticity, Engineering Mathematics, Statistical Methods

Course Objectives:

- 1. To familiarize students with the displacement-based finite element method for displacement and stress analysis and to introduce related analytical and computer tools.
- 2. It provides a bridge between hand calculations based on mechanics of materials and machine design and numerical solutions for more complex geometries and loading states.
- 3. It provides some experience of using commercial finite element analysis software to solve complex problems in solid mechanics

COs	Course Outcomes
CO1	Examine and calculate element stiffness matrices and load vectors for 1-D and 2-D element to analyze displacements and stresses in 1-D and 2-D structures
CO2	Carry out Stress and Deflection Analysis of 1-D and 2-D structures like plate, beam and bars using FEA software
CO3	Carry out Buckling, vibration and thermal analysis of simple engineering structures.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	2	3	1	1	2	2	2		2	3	3	
CO2	3	2	2	2	3	1	1	2	2	2		2	3	3	
CO3	3	2	2	2	3	1	1	2	2	2		2	3	3	

Course Contents

Sr. No.	List of Experiments
	Any Six from following List
	1. Stress and Deflection Analysis of 1D Beam using FEA software
	2. Stress and Deflection Analysis of 2D /3D truss using FEA software
	3. Stress and Deflection Analysis of stepped bar/beam using FEA software
	4. Stress and deflection analysis of 2D plate [Plain stress FEA]
	5. Stress and deflection analysis of 2D axisymmetric component {Cylindrical Pressure vessel analysis]
	6. Modal analysis of any machine component using FEA software
	7. Buckling analysis of beam using FEA software
	8. 2D Steady state Thermal analysis using FEA software [Composite Plate]
	Software based assignments:
	9. Computer program for stress analysis of 2-D truss subjected to plane forces
	10. Computer program for 1-D temperature analysis

Text Books

Sr. No.	Title of Book	Authors	Publication House	Accession No
1	A First Course in the Finite Element Method	Daryl L. Logan	Logan, 2007	
2	Finite Element Analysis	G Lakshmi Narasaiah	B S Publications	
3	Text book of Finite Element Analysis	P. Seshu	PHI Learning Private Ltd. , Delhi	
4	Introduction to Finite Elements in Engineering	Chandrupatla T. R. and Belegunda A. D	Prentice Hall India	

Reference Books

Sr. No.	Title of Book	Authors	Publication House	Accession No
1.	Fundamental of Finite Element Analysis	David V. Hutton	Tata McGraw-Hill	
2.	Finite Element Procedures	Bathe K. J.,	PHI (P) Ltd., New Delhi	
3.	Concepts and Applications of Finite Element Analysis	R. D. Cook	Wiley, India	

LAB-II HEATING, VENTILATION AND AIR CONDITIONING (ME407)

Tea	ching Scheme	Examinat	tion Scheme
Practical:	2 Hrs./ Week	PR Exam:	50 Marks
Credits:	1	Total:	50 Marks

Prerequisite Course: Basic Thermodynamics and Heat Transfer

Course Objectives:

- 1. To Demonstrate the working of domestic refrigerator and Split Air conditioning systems.
- 2. To Estimate and analyze the cooling capacity, COP, Power of a VCR system.
- 3. To Estimation of COP of vapour absorption refrigeration system.
- 4. To Estimate cooling and heating load of building.
- 5. To Design of a duct and selection of air terminal devices for air conditioning systems.
- 6. To Demonstrate the working of Variable Refrigerant Volume/ Variable Refrigerant Flow Systems.

		Blooms Taxonomy			
CO's	Course Outcomes	Level	Descriptor		
CO1	Demonstrate working of domestic refrigerator and Split Air conditioning systems.	2	Understand.		
CO2	Estimate and analyze the cooling capacity, COP, Power of a VCR system	3	Apply		
CO3	Determine cooling and Heating load of building using software.	3	Apply		
CO4	Determine duct sizes and selection of air terminal devices using software	3	Apply		

M	. n	O	0 D	C	
Mapping of Course Outcomes to) Program	Outcomes (POs) & Program	Specific Ou	(comes (PSUS):
	· · ə · ·				

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	-	-	-	-	-	-	3	3	-	-	-	-	3
CO2	3	2	-	-	-	-	-	-	3	3	-	-	-	-	3
CO3	3	2	-	-	2	-	-	-	3	3	-	-	-	-	3
CO4	3	2	-	-	2	-	-	-	3	3	-	-	-	-	3

List of Practicals

Pr No	Description	No.of Hours	COs
1.	Demonstration of a domestic refrigerator and Split Air conditioner along with different auxiliary systems associated with a refrigerator and Split Air conditioner.	02 Hrs.	CO1
2.	Trial on Vapour Compression Refrigeration System to determine cooling capacity and coefficient of performance.	02 Hrs.	CO2
3.	Trial on Ice Plant test rig to determine Coefficient of Performance.	02 Hrs.	CO2
4.	Trial on Air conditioning test rig to study the psychrometric processes.	02 Hrs.	CO2
5.	Trial on Vapour Absorption Refrigeration System.	02 Hrs.	CO2
6.	Cooling and Heating load calculation of Building using suitable software. (Hourly Program Analysis,E-20 Sheet, Energy plus Software)	02 Hrs.	CO3
7.	Calculation of Duct Sizes and selection of Air Terminal Devices by Using suitable software.	02 Hrs.	CO3
8.	Demonstration of Variable Refrigerant Volume/ Variable Refrigerant Flow Systems	02 Hrs.	CO2
9.	Visit to cold storage plant.	02 Hrs.	CO2

Books

S.N.	Title of Book	Authors	Publication House	Accession No
1.	Refrigeration and Air conditioning	Arora, C.P	Tata-McGraw Hill	
2.	Basic Refrigeration and Air Conditioning	P.N. Ananthanarayanan	McGraw Hill	
3.	Refrigeration and Air conditioning.	Manohar Prasad	New Age International	
4.	Elementary Refrigeration and Air- conditioning	Stoecker, W.F., and Jones, J.W.,	McGraw Hill , 2002	
5.	Principle of Refrigeration	Roy J.Dossat	Wiley Eastern limited, 1987 Third Edition	

LAB-III DYNAMICS OF MACHINES (ME408)

	Examination Scheme		
Practical:	2 Hrs./ Week	OR Exam :	50 Marks
Credits:	1	Total:	50 Marks

Prerequisite Course: (if Any) Machine Design, Strength of Materials, and Applied Mechanics, Kinematics of Machines

Course Objectives:

- 1. To Provide fundamentals of vibration and noise so that the students can solve real engineering problems and design engineering systems.
- 2. To Make students able to prepare a mathematical model of the mechanical system in the form of spring, mass and damping elements.
- 3. To Provide knowledge of gyroscope, flywheel and governor
- 4. To Make aware about the instrumentation used for measurement of vibration and noise
- 5. To Provide fundamentals of balancing of rotating and reciprocating masses
- 6. To Provide knowledge of free and forced vibrations

CO	Course Outeomes	Blooms Taxonomy				
	Course Outcomes	Level Descriptor	Descriptor			
CO1	Demonstrate the experimental verification of dynamic balancing and gyroscopic couple/governor/moment of inertia	4	Apply, Mechanism			
CO2	Perform analysis of vibratory system to determine its natural frequency	5	Apply, Complete overt response			
CO3	Conduct measurement and analysis of vibration and noise for machines and equipment	4	Apply, Mechanism			

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	3	2	3	2	-	-	1	2	2	-	2	2	-	-
CO2	3	2	3	2	2	2	-	2	2	2	-	2	3	-	-
CO3	3	3	2	2	2	2	-	2	2	2	-	2	2	-	-

List of experiments

Pr.	Description	CO	РО
1.	Balancing of wheel / rotor on computerized balancing machine and experimental verification of dynamic balancing of rotating masses in different planes	CO1	PO1-5.8- 10,12,PSO1
2.	Verification of principle of gyroscope and determination of gyroscopic couple magnitude	CO1	PO1-5.8- 10,12,PSO1
3.	Determine the effect of varying mass on the centre of sleeve in Governor	CO1	PO1-5.8- 10,12,PSO1
4.	Determination of moment of Inertia by using compound pendulum method	CO1	PO1-5.8- 10,12,PSO1
5.	Determination of natural frequency of damped vibration of single degree freedom system and to find it's damping coefficient.	CO2	PO1-6.8- 10,12,PSO1
6.	Determination of critical speed of shaft with single rotor.	CO2	PO1-6.8- 10,12,PSO1
7.	Verification of natural frequency of torsional vibration of two rotor system and position of node	CO2	PO1-6.8- 10,12,PSO1
8.	Determination of natural frequency of transverse vibration of beam using vibration analyzer and using virtual lab.	CO3	PO1-6.8- 10,12,PSO1
9.	Measurement and analysis of noise using vibration analyzer.	CO3	PO1-6.8- 10,12,PSO1
10.	Simulation of free response of SDOF damped system to demonstrate different damping conditions using suitable software numerically.	CO2	PO1-6.8- 10,12,PSO1

At least eight experiments should be performed from the above list

Text Books

Sr. No.	Title of Book	Authors	Publication House
1	Theory of Machines	S. S. Rattan	McGra-Hill
2	Theory of Machines	T Beven	CBS Publishers
3	Mechanical Vibrations	Grover G. K.	New Chand and Bros. , Roorke
4	Mechanical Vibrations	S. S. Rao	Pearson Education Inc. New Delhi.
5	Mechanical Vibrations	V. P. Singh	Dhanpat Rai and Co.
6	Vibration and Noise for Engineers	Kewal Pujara	Dhanpat Rai and Co.

Reference Books

Sr. No.	Title of Book	Authors	Publication House
1	Vibration of Mechanical System	Alok Sinha	Cambridge university Press , India
2	Vibration Problems in engineering.	Weaver	Wiley India Pvt. Ltd, New Delhi.
3	Mechanical Vibration	William J Palm III,	Wiley India Pvt. Ltd, New Delhi
4	Engineering Vibration	Daniel J. Inman	Pearson Education Inc.

MANDATORY LEARNING COURSE-VII - FINANCIALLY SMART (MC410)

Teaching Scheme		Examination Scheme	
Lectures:	1 Hrs. / Week	CIA	-
Practical:	-	In Sem Exam:	-
Credits:	Non Credit	End Sem Exam:	-
		Total:	-

Personal Financial Literacy Program for Young Adults - Being Financially Smart				
•A- Google Survey – Pre-session (via email)				
•Unit 1 - Behavioural Finance - 3 hours	•Unit 2 -Money Management Skills - 3 hours			
•Section 1 – Let's Talk Money	Section 1 – Important Concepts			
 Psychology of Money 	 Saving vs Investing 			
 Your Relationship with Money 	•2. Inflation			
 Human Behaviour in Financial Markets 	•3. Power of Compounding			
Section 2 –Why Financial Literacy?	•Section 2 – Money Management Techniques			
 Importance of Financial Literacy 	 S.M.A.R.T.E.R way to Wealth 			
•5. Costly Money Mistakes	•5. 6 - Money Jar Method			
Micro-Project 1 - Exercise				
•Unit 3 - Steps of Financial Planning - 3 hours	•Unit 4 – Risk & Investment Management - 3 hours			
Section 1 – Let's Start Planning	Section 1 - Risk Management			
 Need & Components of Financial Planning 	•1.Understanding Risk Management			
•2. Personal Income Statement- Cashflow Mgt & NetWorth Mgt.	•2. Life Insurance			
•3. S.M.A.R.T Goal Setting	 Health Insurance 			
Section 2 - Goal Based Investment Planning	Section 2 - Investment Management			
 4. Contingency/Emergency Fund Planning 	•4. Asset Allocation			
•5. Lifestyle/ Retirement Planning	 Mutual Funds - Overview 			
•6. Estate Planning	+5. Review & Action			
Micro-Project 2 - Case Study				
Unit 5 – Introduction to Business Finance - 3 hours				
How to Read an Income Statement				
How to Read a Balance Sheet				
Micro-Project 3 - Case Study				
B- Google Survey (via email)				
Post -session: - 1. Evaluation 2. Feedback 3. Certification				